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Summary. When Moller-Plesset energy derivatives are determined in the 
canonical Har t r ee -Fock  basis, singularities or instabilities may arise due to 
degeneracies among the occupied or unoccupied orbitals. If  a non-canonical 
basis is used these singularities disappear. Numerically stable expressions are 
presented for the molecular gradient and Hessian of the second-order Moi ler -  
Plesset energy, obtained by differentiating a fully variational Lagrangian of  the 
energy constructed in a non-canonical representation. By using a non-canon- 
ical representation, singularities and instabilities are avoided, and the varia- 
tional property of  the Lagrangian ensures that Wigner's 2n + 1 rule is satisfied 
for the orbital derivatives and that the multipliers satisfy the stronger 2n + 2 
rule. It is shown that the most expensive step in the calculation of  the Hessian 
scales as Mn4o, where M is the number of independent Cartesian distortions, 
n the total number of orbitals, and o the number of occupied orbitals. 
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I. Introduction 

Moller-Plesset perturbation theory constitutes a simple and powerful technique 
for calculating the correlation energy of closed-shell molecular systems. The 
method has recently received new interest with the realization that molecular 
gradients and Hessians of  the second-order Moller-Plesset (MP2) energy can be 
calculated at a cost comparable to that of uncorrelated wave functions [ 1-4], 
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yielding results in significantly better agreement with experiment [5]. For many 
purposes Moller-Plesset theory provides the most cost effective tool in quantum 
chemistry. 

Moller-Plesset energies are conveniently calculated in the canonical Hartree- 
Fock basis, and this representation has traditionally also been used for deriving 
analytical expressions for the geometrical derivatives. A problem with this 
approach is that derivatives of degenerate orbitals are undefined. This leads to 
singularities in the expressions for the molecular derivatives and makes their 
calculation unstable. In practice, singularities appear in calculations on highly 
symmetric molecules when the molecule is treated in a lower symmetry group. 
Instabilities, on the other hand, may arise in calculations on molecules slightly 
distorted from degenerate symmetry, or in calculations involving several diffuse 
orbitals. Accidental degeneracies or near degeneracies may also occur when 
tracing potential energy curves. The singularities or instabilities are spurious in the 
sense that they do not appear when derivatives of the energy are calculated by 
numerical differentiation. They occur only because we insist on expressing the 
derivatives in the canonical representation, in which accidentally degenerate 
orbitals are not uniquely defined, In this communication we demonstrate that 
numerically stable expressions for the derivatives of the Moller-Plesset energies 
may be derived using a non-canonical representation. 

The first analytical expression for the second-order Moller-Plesset molecular 
gradient was derived and implemented ten years ago by Pople et al. [1], and in 
1983 an expression for the molecular Hessian was presented by Jorgensen and 
Simons [6]. A significant advance was made in 1986 by Handy et al. [2] who 
simplified the calculation of gradients and reported the first analytical calculation 
of Moller-Plesset Hessians. Using the Handy-Schaefer technique [7], these 
authors eliminated the highest-order coupled perturbed Hartree-Fock (CPHF) 
equations from the expressions and made the calculation of Moller-Plesset 
derivatives a practical proposition. In 1988 Jorgensen and Helgaker [8] simplified 
the structure of the derivative expressions using a variational technique based on 
Lagrange's method of undetermined multipliers, and presented expressions for 
derivatives up to third order. The variational property of the Lagrangian ensures 
that the variational parameters satisfy Wigner's 2n + 1 rule [9, 10]. In particular, 
the Lagrange multipliers satisfy the stronger 2n + 2 rule [8, 11]. The above papers 
all use the canonical representation in deriving the analytical expressions for the 
derivatives and are therefore unstable. The instabilities have been considered by 
Handy et al. [3], who eliminated the singularities from the molecular gradient by 
reformulating the original equations and also derived an expression for the 
Hessian in a non-canonical representation, using an ad hoc procedure. A 
non-canonical formulation of the second-order Moller-Plesset gradient has also 
been given by Pulay and S~ebo [12], based on the Hylleraas variation method. 

In this paper we use the Lagrangian technique to derive numerically stable 
expressions for the MP2 gradient and Hessian. We construct a variational 
Lagrangian of the energy in a non-canonical representation which reduces to the 
canonical representation at the reference geometry. Only variables which are not 
redundant with respect to the optimization of the total energy and their 
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multipliers enter the Lagrangian. In the calculation of the gradient we must solve 
the zeroth-order equations for the Lagrange multipliers, and for the Hessian we 
must also solve the first-order equations for the orbital responses. As usual, by 
constructing a set of effective densities we avoid transforming the highest-order 
derivative integrals to the molecular orbital (MO) basis [2, 13]. By introducing a 
set of one-electron MP2 Fock matrices we have broken the time-consuming 
contributions to the Hessian into parts which depend on one nuclear distortion 
only. As a consequence, the most expensive step scales as Mn4o. Here M is the 
number of independent geometrical distortions, n the total number of orbitals, and 
o and v the number of occupied and virtual orbitals, respectively. The additional 
terms introduced by the non-canonical representation scale as Mv3o 2. The 
non-canonical expression for the Hessian is therefore computationally not much 
more demanding than the corresponding expression obtained in the unstable 
canonical representation. 

In Sect. 2 we summarize Moller-Plesset perturbation theory, providing 
background and notation for the subsequent development, and we construct the 
Lagrangian of the second-order MoUer-Plesset energy. Expressions for the MP2 
molecular gradient and Hessian are presented in Sect. 3 together with the necessary 
response equations. Section 4 discusses the calculation of these expressions, and in 
Sect. 5 we compare our derivative expressions with previously derived numerically 
unstable expressions. The last section contains some concluding remarks. 

2. Moller-Plesset perturbation theory 

In this section we discuss the calculation of Moller-Plesset energies in canonical 
and non-canonical representations. We point out that although the canonical 
representation is convenient f~r calculating energies, it may introduce singularities 
and numerical instabilities when used in derivative calculations. We then construct 
a variational Lagrangian for the second-order Moller-Plesset energy in a 
non-canonical representation. 

2.1. The Moller-Plesset energy at the reference geometry 

We write the Hamiltonian at the reference geometry as 

H ~ hpqepq 1 :- @ : E gpqrs(epq Ers -- (~rqEp s), (1) 
pq ~" pqrs  

where hpq and gpqrs are the usual one- and two-electron integrals in MuUiken 
notation and the summations are over the full set of orbitals. The operators Epq a r e  

defined in terms of creation and annihilation operators as 

epq = E ap+ aqa (2) 

summing over spin. We use p, q, r, s to denote general (unspecified) orbitals. 
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In Moller-Plesset perturbation theory the unperturbed Hamiltonian is the 
Fock operator [ 14] 

F = ~ Fpq Epq, (3) 
P q  

rpq = 1_ E < HFI[ a+,- [aq a, H]]+ [HF>, (4) 
2,, 

where the Hartree-Fock state [HF> fulfills the Brillouin condition 

< HFI[E,., H] [HF> = 0. (5) 

The indices ijkl and abcd denote occupied and unoccupied orbitals, respectively. 
No matrix elements connect the Hartree-Fock state and singly excited states 
EaiIHF>, and the Hartree-Fock state interacts directly with doubly excited states 
only. Inserting the Hamiltonian of Eq. (1) into Eq. (4) we obtain an explicit 
expression for the Fock matrix 

Fpq = hpq q- E kpqii' (6) 
i 

where 
kpqrs = 2gpqrs -- gpsrq (7) 

is introduced for convenience. 
The second-order Moller-Plesset energy is calculated from the expression 

E = <HF[HIHF> + Z <HFIH[u>[G-'].~<v [H[HF>, 
ut~ 

(8) 

where 
G,v = 6.~ ( HF}FIHF) - <u IF}v). (9) 

Only doubly excited states enter the second-order perturbation expansion. The 
Brillouin condition, Eq. (5), implies that the Fock matrix is block diagonal since 
for occupied-virtual rotations [ 15] 

Z <HFI[ a+, [a,,,,,/4]]+ IHF> = <HFI[E,a, H] ]HF>. (10) 
o" 

The Moller-Plesset energy, Eq. (8), is invariant to unitary rotations among 
occupied and among virtual orbitals. The energy is therefore best calculated in the 
canonical basis, in which the Fock matrix and therefore G are diagonal: 

E <HFI[ a+,- [aq~, H]]+ IHF> = 2epG a. ( l l )  
(7 

In terms of integrals the orbital energies are given as 

ep = hpp + Z kpp;i. (12) 
i 

Note that the canonical condition, Eq. (11), contains the Brillouin condition, Eq. 
(5), as a special case, and that it determines the orbitals uniquely except when the 
orbital energies ep are degenerate. 
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Before considering the Moller-Plesset energy at displaced geometries let us 
write the second-order energy explicitly in the canonical basis. For this purpose 
we use the biorthonormal basis [16] 

I~jb> = �89 -]- ~ab~i j )  - ' (  2E.~Ebj + E a j E b i  ) [ H F > ,  (13) 

(~~ l = �89 HFIE,~Ejb, (14) 

where ai >1 bj. In this representation the Hamiltonian matrix elements between 
the Hartree-Fock state and the excited states are 

2 
<HF]H]~b> (15) 

1 -F ~ab~i j  giajb" 

(~  I HIHF) = k,oj~, (16) 

and the only nonvanishing elements of G are 

ab ( ~ l a  l, j ) =e , -~o +e, - ~ .  (17) 

Inserting the above elements, Eqs. (15-17), into the energy expression, Eq. (8), 
we obtain 

E = ( H F I H I H F )  + E g,~ibkj__b (18) 
iajb el - -  ~a Ji- I~j - -  ~b 

without restrictions on the summation range. 
For future reference we write the first-order M~ller-Plesset correction to the 

wave function 

I M P 1 )  = ~ l u ) G L '  (u  [ H I H F )  (19) 
u 

in the canonical representation. Inserting the matrix elements above we find 

ab rMel)  = E I,~ >t,o,o, (20) 
ai >~ bj 

2 aS ( M P I {  = Z Uiajb( i j  1, (21) 
~i>_-bj 1 + (~abrij 

where the amplitudes are given by 

k~b 
ti~Jb ei -- ea + ej -- e b (22) 

g iajb 
Uiajb e i - -  % + ej - e b (23) 

The second-order M~ller-Plesset energy may be written in the following equiva- 
lent forms 

E = ( H F [ H I H F )  + E g,aybtiajb = (HF[HIHF) + E ui.jbki.jb 
iajb iajb 

in terms of integrals and amplitudes. 

(24) 
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2.2. The M~ller-Plesset energy at displaced geometries 

In order to consider the variation of the M~ller-Plesset energy with geometry we 
must relate the Hamiltonian H(x) and the unperturbed states IHF(x)) and lu(x)) 
at displaced geometries to the Hamiltonian and states at the reference geometry. 
We therefore express the Hamiltonian and states at displaced geometries in terms 
of a set of symmetrically orthonormalized molecular orbitals (OMO's) which 
reduces to the canonical basis at the reference geometry. The orthonormality of 
the basis ensures that we may neglect the geometry dependence of the creation and 
annihilation operators and the states constructed from such operators when taking 
derivatives of the energy [6, 17]. For ease of notation we therefore omit any 
reference to the geometry in the OMO creation and annihilation operators, The 
OMO basis is chosen because of the simple analytical expressions for its derivatives, 
but any other orthonormal basis may be used provided its geometry dependence 
is well defined. As shown elsewhere [ 17, 18] the Hamiltonian may be written as 

n(x) = ~ ~pq(X)Epq q-_l Z ~pqrs(x)[EpqErs- ~rqEps] , (25) 
pq 2 pqrs 

where the integrals are calculated in terms of the OMO's as 

~pq(X) = Z htu(x)[S-1/2(x)]tp[ s -  I/2(x)]uq, (26) 
tu 

~pqrs(X) ~- ~ gtuvw(X)[S--l/2(X)]tp[S--1/2(X)]uq[S--1/2(X)]vr[S--l/2(X)]ws. (27) 
tuow 

Indices tuvw denote general orbitals. The Hartree-Fock state, the excited states, 
and the Hartree-Fock orbitals at displaced geometries may be written in the OMO 
basis as 

I HF(x)) = exp( - x) ]HF), (28) 

]u(x) ) = exp( - x) ]u ), (29) 

a+, (x) = exp( - X)ap+~ exp0c), (30) 

where IHF) and ]u) are constructed from OMO creation operators. The 
antisymmetric orbital rotation operator x is given by 

K = Z l~.q(x)Epq = Z l~pq(X)[gpq--gpq], (31 )  
p>q p>q 

where for ease of notation we omit the geometry argument in x(x). The exact 
summation range and the determination of the parameters Xpq are discussed later. 

Replacing the geometry-independent states and operators of the previous 
section by their geometry-dependent counterparts, Eqs. (28-30), we obtain the 
following expression for the second-order Maller-Plesset energy at displaced 
geometries: 

E(x) = (HF I exp(x)H(x) exp( -  to)IHF> + E (HFI exp(x)H(x) exp(-x)  [u) 
uo 

x [G(x) - 1]uv (v ] exp(x)H(x) exp( -- x) ]HF), (32) 
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where 

Guy(x) = 6uv (HFI exp(x)F(x) exp(--~c) IHF> - (u I exp(~)F(x) exp ( -x )  Iv> (33) 

and 

exp(~)F(x) exp( - ~:) = 1 ~ <HFI[a+" [aq,. exp(x)H(x) exp( - x)]] + I HF>Epq. 
2 pqa 

(34) 

To specify the Moller-Plesset energy completely at displaced energies, we must 
determine the geometry dependence of the operator x. 

As noted above it is convenient to calculate the Moller-Plesset energy at 
the reference geometry in the canonical representation since the unperturbed 
Hamiltonian then becomes diagonal. It is therefore tempting to use the canoni- 
cal representation at displaced geometries as well and require that the canonical 
condition, Eq. (11), is fulfilled at all geometries: 

<HFI[a +,  [aqa , exp(x)H(x) exp( -- x)]l+ IHF> = 2~p(x)fpq. (35) 
o" 

Expanding this equation around the reference geometry and setting each term 
equal to zero we arrive at the CPHF equations [19, 20] which determine the 
geometry dependence of ep and Xeq for all p > q. Unfortunately, this procedure 
breaks down when the Hartree-Fock orbitals at the reference geometry con- 
tains degenerate or nearly degenerate orbitals, since the CPHF equations then 
become singular or numerically unstable. These problems are avoided if, in- 
stead of insisting on the canonical condition of Eq. (11), we use the weaker 
Brillouin condition of Eq. (5) at displaced geometries: 

(HFI[Eia, exp(x)H(x) exp( - ~)1 I HF> = O. (36) 

Expanding this equation around the reference geometry and setting each term 
equal to zero we obtain the Hartree-Fock response equations [15, 20] which 
determine the geometry dependence of Xa;. Only occupied-unoccupied rota- 
tions now enter the orbital rotation operator [ 15] 

K = ~ ~i(x)E~. (37) 
ai  

Note that although we do not require the canonical condition to be satisfied at 
displaced geometries, it still holds at the reference geometry. Therefore, when 
expanding the Fock operator, Eq. (34), in geometrical displacements, the 
undifferentiated term is diagonal and the remaining terms block diagonal only. 
In the derivative expressions only terms containing the undifferentiated Fock 
operator are inverted. The non-diagonal derivative Fock matrices are easily 
constructed and enter the calculation of the Hessian through one-index trans- 
formations scaling as Mn4o. 
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2.3. The Moller-Plesset energy Lagrangian 

In the previous section we gave an expression for the M~Uer-Plesset energy 
which is valid at all geometries and reduces to the canonical expression at the 
reference geometry. Together with the Brillouin constraints of Eq. (36) it 
completely determines the energy at displaced geometries. To avoid constrained 
variables when taking derivatives we use Lagrange's method of undetermined 
multipliers and construct the Lagrangian 

W(x, ~, ~) = (HF I exp(x)H(x) exp(-tc)IHF ) 

+ ~ (HF[ exp(x)H(x) exp(-to) [u)[G(x) -'],v (vl exp(tc)H(x) 
uv 

x exp( - x ) I H F  ) + Z ~,, (HFI[E~,,, exp(x)H(x) exp( -x ) ] IHF)  
/ a  

(38) 

introducing one multiplier (;a for each Brillouin constraint [8, 11]. Note that the 
geometry dependence of the Lagrangian is completely isolated in the operator 
exp(r)H(x) exp ( -  to). The Lagrangian fulfills the variational conditions 

~W(x, ~r 0 
- O, (39)  

c~tr 

W(x, ~, 0 
= O, ( 4 0 )  

at all geometries. Expanding these conditions in geometrical displacements and 
se.tting each term equal to zero, we obtain the Moller-Plesset response equations 
which determine tr and r 

The Lagrangian is of no use for calculating energies since the constraints are 
trivially fulfilled by first carrying out a separate Hartree-Fock calculation and 
then using the obtained orbitals and orbital energies in the subsequent Mgller- 
Plesset calculation. In contrast, when calculating energy derivatives the Lagran- 
gian is very useful since its variational character ensures that we may take 
advantage of the simplifications which occur for fully variational wave functions. 
In particular, Wigner's 2n + 1 rule holds for the non-linear parameters x~a while 
the linear parameters ~, obey the stronger 2n + 2 rule. If we had used the 
canonical condition at displaced geometries, occupied-occupied xq rotations, 
unoccupied-unoccupied l'(5ab rotations, orbital energies %, and their multipliers 
would also enter the Lagrangian [8]. 

3. M g l l e r - P l e s s e t  energy derivatives 

In the following we first present the general expressions for derivatives of 
variational Lagrangians. Inserting the Lagrangian constructed above we then 
obtain the Moller-Plesset derivatives and response equations. 



Moller-Plesset energy derivatives 235 

3.1. Derivatives of variational Lagrangians 

General expressions for derivatives of variational Lagrangians have been re- 
ported elsewhere [8, 11] and are reproduced here for easy reference. We denote 
the total derivatives of a function f(x,  ~) with respect to x b y f  (m), and the partial 
derivatives with respect to x and r by f(mn). The gradient and Hessian of the 
Lagrangian 

are then given by 

W(x, r, ~) =E(x, r)+~e(x, r) (41) 

W (1) = E (1~ + ~(~176 (42) 

W (:) = E (2~ + 2E(11)/r 0) + E(~162 (D + {(~176 + 2e(11)Ir (1) + e(~ (43) 

where g(0) and r (1) are obtained from the response equations 

{(~176 = - E (~ (44) 

e(~176162 (0 = --e 0~ (45) 

We emphasize that these equations are completely general and can be applied to 
any wave function containing constrained variables. We note that the gradient 
requires ~(o) only, whereas the Hessian requires ~(o) and ~r In the next section 
the above expressions are used to determine the molecular gradient and Hessian 
of  the second-order M~ller-Plesset energy. 

3.2. The Maller-Plesset molecular gradient and Hessian 

Inserting the Lagrangian, Eq. (38), into the derivative expressions, Eqs. (42) and 
(43), we obtain the MoUer-Plesset molecular gradient 

W (') = <HFIH(1)IHF > + 2 Z (HFIH(OIu>(u IH(~ 
~(o) 

u I . J u u  

- E <HFIH(~ <v IH(~ + E  ~}0) (HFI[Eia, H(1)] IHF> 
(o) ~ (o) 

t cv  ~ u u  ~ v v  i a  

and the Moller-Plesset molecular Hessian 

W (2) = <HFIJ(2)IHF) + 2 E <HF}J(2)Iu><ulH(~ 
u 6(~ 

< HFIH(~ >G[J(=)]~v <v [H(~ ) 
- -  E ~ (o) (7. (o) 

u v  " 1  u u  v w )  

+ E ~iOa ) <HFI[E'.' J(:)l ]HF) + 2 E (;(o) 
i a  u - -  u u  

(46) 

(47) 
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In these equations the tilde indicates conjugation and G[A] means that the Fock 
operator entering the matrix is calculated from the operator A rather than the 
Hamiltonian H as in Eq. (4). We have also used the following notation: 

j( l)  = 8(1) + [tr H0)], (48) 

j(2) = H(2) + 2[xo), H(l)] + [xO), x(1), H(0)], (49) 

<By[ 8(~ I v )a[J(1)]o. 
V(d ) = ( HFIj(I)I u )  - Eo G~ ) (50) 

To display the structure of the molecular derivatives more clearly we introduce 
the matrix 

= r~ij  r ] (51) 
epq L ~ab ' 

where the diagonal blocks contain the one-electron density 

~pq = ( g e l l g p q l g P l > - ( M P l l g e l > < a F I g p q l n g  >, (52) 

Inserting the biorthonormal expressions for the first-order M~ller-Plesset correc- 
tion, Eqs. (13) and (14), we find that the only non-vanishing density elements are 

~ij = - 2  ~ Uiakbtjakb, (53) 
akb 

~ab = 2 ~ Uiajc tibjc. (54) 
ijc 

Collecting terms, we may now write the derivatives more succinctly as 

W (1) = (HFIH(I) IHF)  + 2(HFIH(1)IMP1) + Wr ~F[H (1)] (55) 

and 

m (z) = (HFIJ(2)IHF) + 2(I-IFIJ(=)IMP1) + Tr eF[J(Z)] + 2 Z V<2)V(u~) . G(0) (56) 

We note the similarity between the expressions for the gradient and the Hessian. 
In fact, the first three contributions to the Hessian are identical to the terms in 
the gradient except that the Hamiltonian H o) is replaced by jr We shall see 
that these terms are evaluated in much the same way for the gradient and the 
Hessian, and that in either case there is no need to transform the highest-order 
derivative integrals to the MO (molecular orbital) basis. The Hessian requires, 
however, the transformation of first-derivative integrals with two occupied and 
two virtual indices. 

The gradient and Hessian expressions presented above may be given a simple 
physical interpretation. The gradient, Eq. (55), has no terms describing the 
response of the orbitals to nuclear displacements, and contains in this sense static 
terms only. On the other hand, to calculate the Hessian we need the first-order 
response of the orbitals which enters each of the four terms in Eq. (56). This is 
in accordance with Wigner's 2n + 1 rule. If we regard the second-order Moller- 
Plesset energy as obtained by combining matrix elements r with amplitudes 
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tiajb (as displayed in Eq. (24)), the gradient contains the first derivatives of the 
matrix elements and the undifferentiated amplitudes. In contrast, the Hessian 
also contains the first derivatives of the amplitudes 

G~O ) (57) 

in the last term in Eq. (56). 

3.3. The Moller-Plesset response equations 

To determine the response equations we proceed in exactly the same way as for 
the derivatives above. We obtain for the Lagrange multipliers ~0~ 

~ ~'m) <HFI[Ejb ' [E~, H(~ IHF> = - 2 ~ <HFI[E~' H(~ lu ><u I H(~ 
taJb ~rr (0) 

jb  u ~ uu 

+ ~ <HFIH(~ ~ , H(~ },v <v IH(~ (58) 
G ' 

and for the orbital responses r m 

(HFI[Eia, [E;, H(~ IHF)x~b~) = -(HFI[E,~ H r IHF). (59) 
bj 

The linear equations (58) and (59) have the same coefficient matrix 

Aa~bj = (HFItEi~, [E~, H(~ [HF), (60) 

which may be shown to he symmetric in ai and bj. Using Eq. (52) and collecting 
terms we may write the linear equations as 

~ ~ to) -2(HFI[E ~, H r176 IMP1) -- E ~ p q F { [  E ~ i ,  H(~ (61) ZX aibj ~ j b 
bj  pq 

and 

Aa;bjX~p = -- ( HF I [Ei,, Hm] I HF). (62) 
bj 

Equation (61) corresponds to the Z-vector equation of Handy et al. [2], and Eq. 
(62) is the usual equation for the first-order response of the Hartree-Fock 
orbitals, independent of Moller-Plesset theory. Equations (61) and (62) differ in 
the right-hand sides only. 

4. Computational considerations 

In this section we analyze the expressions for the molecular gradient and Hessian 
derived in the previous section with emphasis on computational aspects. In 
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particular, we identify all terms in the derivatives whose calculation is propor- 
tional to the fifth power in the number of  orbitals (occupied o, virtual v or 
general n) in order to pinpoint the computationally most demanding steps. The 
first contributions to the gradient (55) and the Hessian (56) are simply the 
derivatives of  the Har t ree -Fock  energy. Their calculation is well known and 
involves only terms to the fourth power (or lower) in the number of  orbitals. In 
the following we concentrate on the remaining contributions to the derivatives. 

4.1. The calculation of ( n F l a ( 1 ) l g e l )  and (HFIJ(2)IMP1) 

The second contributions to the gradient, Eq. (55), and Hessian, Eq. (56), are 

2(HFIHO)[MP1) =2 ~ t _0) (63) iajb ~ iajb, 
iajb 

2(HFIJ~2)IMP1) = 2 Z t~Jr~ ~}b, (64) 
iajb 

where t~,jb are the only non-vanishing elements of  the transition density between 
the Har t ree -Fock  state and the first-order M~ller-Plesset correction. The 
integrals g(1) and j (2) are given by [use Eqs. (26, 27) and Eq. (49)] 

g(~) = gO) _ �89 g(O)}, (65) 

j (2) = g(2) _ �89 _ SO)S(1), g(O)} .+_ {2to) _ So>, gO)} 

..[_ {1~(1) {1~(1)g(0)}} + l{s (1 )  ' {S(1)g(O)}} _ {1~(1), (5 (1 )g (0 )}} .  (66) 

Braces denote one-index transformations, for example in Eq. (65): 

{S (1), g(O)}pqr s = ~'~ (~(1)o'(~ + .~(l)r176 ,~(1)o'(~ ~ S o)~,~~ ~ (67) I ,~pt  ,b tqrs ~ q t  6 p t r s  -~ ~ r t  ,~pqts ~ st OpqrtJ,  
t 

where the summation runs over the full set of  orbitals. General expressions for 
differentiated integrals in terms of  one-index transformations are given in 
[18, 20]. We also note that commutators of  the Hamiltonian give rise to 
one-index transformed integrals. For example, in Eq. (66) the one-index transfor- 
mations with r ~ arise from the commutators [x(x), H(~)] and [to ~ x ~ H ~~ of 
Eq. (49). 

To calculate the terms Eqs. (63) and (64) containing the integrals Eqs. (65) 
and (66) it is helpful to introduce the intermediates 

�9 ~) = 2 Z '  "(") (68) ~ iajb ~ pajb , 
ajb 

~ )  = 2 V t "(") (69) / ~  iajb•ipjb" 
q6 

The operation count for the calculation of  ~(n) for one geometrical distortion is 
proportional to nv2o 2. The matrix ~(n~ shares many of the properties of  the 
generalized Fock matrix of Siegbahn et al. [21] and will therefore be referred to 
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as the MP2 Fock matrix. In particular, it has the property that 

t~a:b {A, g(n)}ia:b = T r  A ~  (n). ( 7 0 )  
iajb 

Equations (63) and (64) may now be written 

2(HFiHO)IMPI ) = 2 ~. tiajbg~la)'b - -  Tr S~ (~ (71) 
iajb 

2( HF[j(2) IMP1) = 2 ~ tiajb g~2)b  - -  Tr(S (2) - S~176 (~ 
iajb 

+ 2 Tr(2~ ~ - S~  ~ + 2 Tr 1r {~~176 

- Tr(21r (1) -- lSO))~{s~l)'x(~ (72) 

where we use the notation @~s~l), #o)} to indicate that the MP2 Fock matrix has 
been calculated from the one-index transformed integrals {S ~ g(O)}. 

The first terms in Eqs. (71) and (72) consist of amplitudes multiplied by 
differentiated integrals, and are best calculated by transforming the amplitudes to 
the contravariant AO (atomic orbital) basis in a process scaling as n4o. Adding 
these densities to the two-electron Hartree-Fock densities, the first terms in Eqs. 
(71) and (72) may be calculated simultaneously with the Hartree-Fock deriva- 
tives at little extra cost. 

The remaining terms in Eqs. (71) and (72) are easily calculated once the 
various MP2 Fock matrices are available. The undifferentiated Fock matrix @(o) 
is conveniently calculated in the MO basis in a process proportional to nv2o 2. 
The necessary integrals (one occupied, one virtual, and two general indices) are 
already available in the MO basis from the calculation of the energy. In fact, @(0) 
also enters the right-hand side of the zeroth-order Lagrange multiplier equations 
and should therefore already be available at this stage. 

The differentiated matrix ~(1) can be calculated in the MO basis in the same 
way as @(0). This requires the transformation of derivative integrals to the MO 
basis (two general, one virtual, and one occupied index) scaling as Mn4o, and the 
construction of the Fock matrices scaling as Mnv2o 2. Alternatively, the @(1) may 
be constructed directly from the AO integrals according to (denoting AO's by 
Greek letters) 

0 ~1) = 2 X titjrag~ro, (73) 

(1 Cb(a~ = 2 ~ t#~g,t~ra, (74) 

which requires storing and sorting amplitudes with three contravariant AO 
indices and one MO index (occupied or virtual). When ~o) is constructed 
according to Eqs. (73) and (74) we avoid calculating first-derivative integrals 
with two general, one virtual, and one occupied index. The construction of ~o) 
in the AO basis scales as min(Mn 5, 12n s) since each integral contributes to no 
more than 12 Cartesian directions. Using translational and possibly rotational 
invariance, the operation count may be further reduced to 9n 5 or 6n 5. This 
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suggests that for most molecules it is more efficient to construct @o) in the AO 
basis. 

Finally, two of the terms in Eq. (72) contain MP2 Fock matrices constructed 
from one-index transformed integrals. These matrices are best calculated in the 
MO basis since the undifferentiated MO integrals are already available from the 
calculation of the energy. The one-index transformations scale as Mn3vo and the 
construction of the Fock matrices scales as Mnv2o 2. The trace operations are 
inexpensive, requiring only n 2 operations each. Note that all expensive steps 
depend on M rather than M 2. The reason for this simplification is the use of 
Fock matrices as intermediates. For example, without Fock matrices the calcula- 
tion of the last two terms in Eq. (72) scales as M2v40 2. 

4.2. The calculation o f  Tr r 0)] and Tr oF[,/(2)] 

The third contributions to the molecular gradient Eq. (55) and Hessian Eq. (56) 
are obtained by taking the traces of Q multiplied by F calculated from H (~) and 
j<2), both of which contain one-index transformed integrals. We have elsewhere 
given explicit expressions for such Fock matrices [20]. In particular, the Fock 
matrix constructed from the differentiated integrals I ~) (where I denotes one- 
and two-electron integrals collectively) one-index transformed by A may be 
calculated as 

F {A'/(n)} -~- { A ,  F ( n ) } p q  "31- 4 ~V ~pqts~7~(n)" --A.ts, (75) p q  
is 

where F (") is the Fock matrix calculated from I (") 

and 

F ~  ~ = h~  ) + 2 Z --pql:t'~(n)'" (76) 
i 

• ( , )  = r ~,.(o) 1,,(.) (77) 
pqrs  o pqrs  - -  4 6  prqs - -  "46 psrq " 

We note that F ~") may be calculated in the AO basis. Multiplying Eq. (75) by r 
and taking the trace we obtain 

Tr oF {A'~')} = 2 Tr oAF (h) + 2 Tr DAQ <n), (78) 

where D is the Hartree-Fock density and 

Q~) __ ~ .~(n) ,~ (79) ~ pqrs ~rs  �9 
r$ 

Using Eq, (78) and the expression for the differentiated integrals go) [Eq. (65) 
and likewise for the one-electron integrals ~o)], it is straightforward to show that 
the third contribution to the molecular gradient is given by 

Tr #F[H ~ = Tr oF o) - Tr S(I)(e(~162 + Q(~ (80) 
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where we have written #0) instead of F (~ to remind ourselves that the undifferenti- 
ated Fock matrix is the diagonal matrix of orbital energies. The first term in Eq. (80) 

Tr oF (~) = ~ ,) hO) + 2 ~] a .~(1).. (81) l.,.a ~Pq'~ ~zpq-- pqtt 
pq pqi 

is best calculated in the AO basis, avoiding the transformation of differentiated 
two-electron integrals. Again, we transform the densities to the AO basis and add 
these to the Hart ree-Fock densities, obtaining this contribution at little cost. 

The Hessian contribution is more involved. To work out the final expression we 
need the Fock matrix constructed from doubly one-index transformed integrals, an 
expression for which is provided by Eq. (E. 17) of [20]. Multiplying this expression 
by # and taking the trace, we obtain 

Tr eF ~4,~n'~ = 2 Tr oA(BF + B"F) + 2 Tr DB(AQ + A"~Q) 

+ 8 Tr eAP tna + 8 Tr Q BP tAl, (82) 

where 

pt.41 = ~ ~i~pqisAis. (83) Pq 
is 

It is now straightforward to work out the final expression: 

Tr QF[J (2)] = Tr QF (2) - Tr(S (2) - S~176176 + Q(~ 

+ 2 Tr(2r (l) - S(1))(F~ + Q~ + 2 Tr Qr~176 ~ - 8(~ ~ 

- T r  g ( 2 r  ~  - �89 S ( 1 ) ) ( S ~  (~ + ~ (~176  

+ 2 Tr D(r (~ - -  S ( 1 ) ) ( ~ c ~  (~ - Q(~162  

+ �89 Tr DS(1)(S(OQ (~ + Q<~ 

+ 4 Tr e(2r ~ - S ( I ) ) P  [2KO)-  S(1)]. (84) 

Again the first contribution is calculated in the AO basis as in Eq. (80) for the 
gradient. The second term is easily calculated, while the third term requires F ~ and 
Q(~). These may both be calculated in the AO basis. The differentiated Fock matrix 
F (1) is also needed for example for the Hartree-Fock Hessian and should already be 
available, and QO) may be calculated in exactly the same way. The remaining terms 
in Eq. (84) are all trivial once the matrix pt2~o>- ~'1 has been calculated. 

It should be noted that none of the terms in Eq. (84) require more than Mn 4 
operations. The calculation of these terms therefore represents a minor part of the 
MP2 Hessian calculation. Again, it is the use of Fock matrices which makes these 
simplifications possible. 

4.3. The calculation of V~ 1) 

The last contribution to the Hessian Eq. (56) contains the elements V~ 1) 

1 "~- ~abOij . ( 1 )  _ _  ; ( 1 )  
2 Viajb --~eiajb - -  E (F[J(1)]ikUkajb + F[J(I )] jkUiakb)  

k 

+ Z (F[J(1)]acUicjb + F[J(')]bcUiajc)" 
c 

(85) 
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The integrals j o )  are given by 

j(1) - -  .,~(1) {1~(1) Is(l), g(~ b, (86) iajb - -  ~ iajb "Jr 

which requires the transformation to the MO basis of  first-derivative integrals 
with two occupied and two virtual indices, scaling as Mn4o. The one-index 
transformations are proportional to Mnv2o 2. Using Eq. (75) the Fock matrix 
calculated from j(1) is given by 

F[jO)] = F(i) + {to(l) _ �89 ' 8(0)} + 2pt2~o)- ~o1. (87) 

All components of  this matrix are available from the calculation of  Tr #F[J  <2)] of  
Eq. (84). The calculation of  the last two contributions to Eq. (85) scales as 
Mv3o z. Finally, the elements of  ~(z) are related to those of  V (~ as 

~(1) 1 -~-rabOiJ (2 V ,'-J+ = ~1]+ _ V o )  ~ ( 8 8 )  
2 ib/,J. 

Once V (1) and ~o) are available, the calculation of  the last contribution to the 
Hessian, Eq. (56), is straightforward. To avoid excessive recalculation of  inte- 
grals all components of  V ~ must be kept on disk simultaneously. For large basis 
sets this term therefore becomes the bottleneck of  the Hessian calculation. It is 
also found to be time-consuming because of  the cost of  the transformation of  the 
first-derivative integrals. 

4.4. The response equations 

Using Eqs. (73) and (74) the zeroth-order response equations for the Lagrange 
multipliers, Eq. (61), may be written 

Z a r(o) _ 2 ( q ~ )  - -  (~0 ) )  - -  1 E ~ p q A p q  ai ,  (89) 
"aaibybjb = 2 pq 6j 

where we have extended the definition of  A to have the first two indices general 

Apqbs = ~ <HFI[a+<. [ap., [Eg~, H(~ [HF). (90) 
a 

It is easy to verify that when the first two indices of  A are virtual and occupied, 
respectively, the above definition reduces to the one given previously in Eq. (60). 
The first-order orbital-response equations, Eq. (62), become 

A,,ibjX}~) = 2F[H(')]a,, (91) 
bj 

where the right-hand side is calculated as [use Eq. (75)] 

F[H(1)] = F (1) - �89 o), F (~ - 2P s~', (92) 

which is identical to Eq. (87) except that the contributions from ~r are absent. 
Both ~(o) and 117 (1) may be determined using the technique of  Pople et al. [ 1] or any 
other method based on the conjugate-gradient algorithm. Equations (89) and (91) 
are essentially those solved by Handy et al. [2, 3] in their implementation. 
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5. A comparison with numerically unstable procedures 
based on the canonical condition 

The expression for the MP2 molecular gradient obtained by insisting on the 
canonical condition (indicated by left superscript c) reads [8] 

cW~ = ( H F I H ~  + 2 ( H F I H m I M P I >  + 2 Z cr(~ F[H~ (93) 
p>~q 

It is clear that the equivalence of the expressions based on the Brillouin 
condition, Eq. (36), and on the canonical condition, Eq. (35), is established if we 
can show that 

cr(O).pq = ( 1  + 6pq) - l p p q  (94) 

for p ~> q. The parameters c(rq are the multipliers of the canonically-based 
Lagrangian. There is one multiplier for each orbital energy ep and one for each 
orbital rotation ~:,b, X~j, and x~. The zeroth-order canonical multipliers are 
determined by the CPHF equations [8] 

ct'{~ cA = 2(O~ ~ - 0~~ (95) pq  " -pqrs  
p >~q 

where CA is identical to A above [Eq. (90)] except that all four indices may be 
either occupied or virtual. The matrix CA is not symmetric in the pairs of indices 
pq and rs except for virtual-occupied rotations. The matrix @o) is defined as in 
Eqs. (68) and (69). The structure of CA allows us to obtain explicit expressions 
for the occupied-occupied and virtual-virtual Lagrange multipliers, and we 
find: 

c~-(0) (96) ii ~ - -  Z tiajb $1iajb' 
ajb 

cr 2 = Z t,oj  U,aj , 
ijb 

c?-~o) = 
-~tj 

cy (o) 
"~ ab 

(97) 

(98) 

(99) 

gi - -  g j  

8 a - -  8 b 

This reveals the problem with the canonical condition: The CPHF equations are 
singular for degenerate orbitals. However, if we assume that the orbitals are not 
degenerate and substitute the expressions for ~o~ given above in Eqs. (68) and 
(69), we find after some rearrangement that 

ij -- O~ ~ = (ei -- sj)~iy, (100) 

,,tr~(O) _~. (13, a - -  l]b ) ~  a b ,  (101)  a02 - -  

and the denominator therefore cancels. This removes the instabilities in the 
CPHF equations but does not apply when the energies are exactly degenerate 
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since in this case the multipliers are undetermined. One may then invoke a 
suitable limiting procedure, defining the multipliers by their limiting values as the 
orbitals become degenerate. In this way we may identify the off-diagonal 
multipliers c(ij and C(,b with the densities ~ij and ~ b  in all cases. Likewise, the 
diagonal multipliers c(ii and c(,a are easily seen to be equal to ~it and ~aa divided 
by two. We have now established Eq. (94) for the occupied-occupied and 
virtual-virtual blocks, and it remains to demonstrate that the canonical 
and non-canonical occupied-virtual multipliers are identical. Replacing the 
occupied-occupied and virtual-virtual multipliers by the densities according to 
Eq. (94), the CPHF equations, Eq. (95), become 

1 
1 Z + i = - : ( O i  ~ - Oi~ (102)  Z A aibJ c~(O) _}_ -2 

yb kt 

This expression is identical to the response equations, Eq. (89), which determine 
(~o). We have now verified that the expressions for the gradient based on the 
canonical and the Brillouin conditions are equivalent. 

We have seen that for the gradient the singularities may be removed by a 
simple rearrangement of the equations which determine the zeroth-order Lagran- 
gian. For the Hessian the elimination of singularities becomes much more 
difficult since they cannot be removed directly from the first-order orbital 
responses ~(1). The elimination can first be carried out after the orbital responses 
have been inserted into the expression for the Hessian, requiring a tedious 
rearrangement of each term in the Hessian. 

We note that the most expensive terms introduced by the non-canonical basis 
are the one-index transformations in Eq. (85). These transformations represent a 
rather small fraction of the total calculation. No significant computational 
advantages are therefore gained by using the canonical representation. 

6. Conclusion 

We have derived expressions for the molecular gradient and Hessian of the 
second-order Moller-Plesset energy using the variational Lagrangian technique. 
By using a non-canonical basis, only non-redundant parameters (orbital rota- 
tions and their multipliers) enter the calculation. For the gradient the zeroth- 
order equations for the Lagrange multipliers must be solved, and for the Hessian 
we also need the first-order orbital responses. To avoid transforming to the MO 
basis first-derivative integrals for gradients and second-derivative integrals for 
Hessians, a set of effective densities (the same set for gradients and Hessians), is 
constructed. By introducing Fock-like matrices we have separated the time- 
consuming steps into terms which are linear in the distortions, reducing the cost 
of the most expensive step to Mn4o. The derived expressions are structurally as 
simple as those derived in the unstable canonical representation and computa- 
tionally not significantly more demanding, requiring additional terms scaling as 
Mv3o 2. 
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We believe that this formulation for the Hessian of the second-order Moiler- 
Plesset energy is the most elegant available, being presented in terms of Fock-like 
derivative matrices. The scaling cost of the calculation is clearly Mn4o. As stated 
earlier, Handy et al. [3] have programmed their first formulation for the Hessian 
in the non-canonical representation. It is available as part of the CADPAC 
quantum chemistry code [22]. The equivalent of the terms in Sects. 4.1 and 4.2 
above are at present programmed neither as suggested in [3], where the cost 
scaled a s  M2/j402, nor as suggested in this paper in terms of Fock-like matrices, 
but they have all been written ad hoc to scale no more than Mn40. 

Handy and coworkers, in their many applications with their code, have 
demonstrated that this MP2 Hessian availability is an extremely important tool 
for theoretical spectroscopy. It is therefore important that the relatively compli- 
cated formalism be presented as elegantly and efficiently as possible, and this has 
been the purpose of this paper. 
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